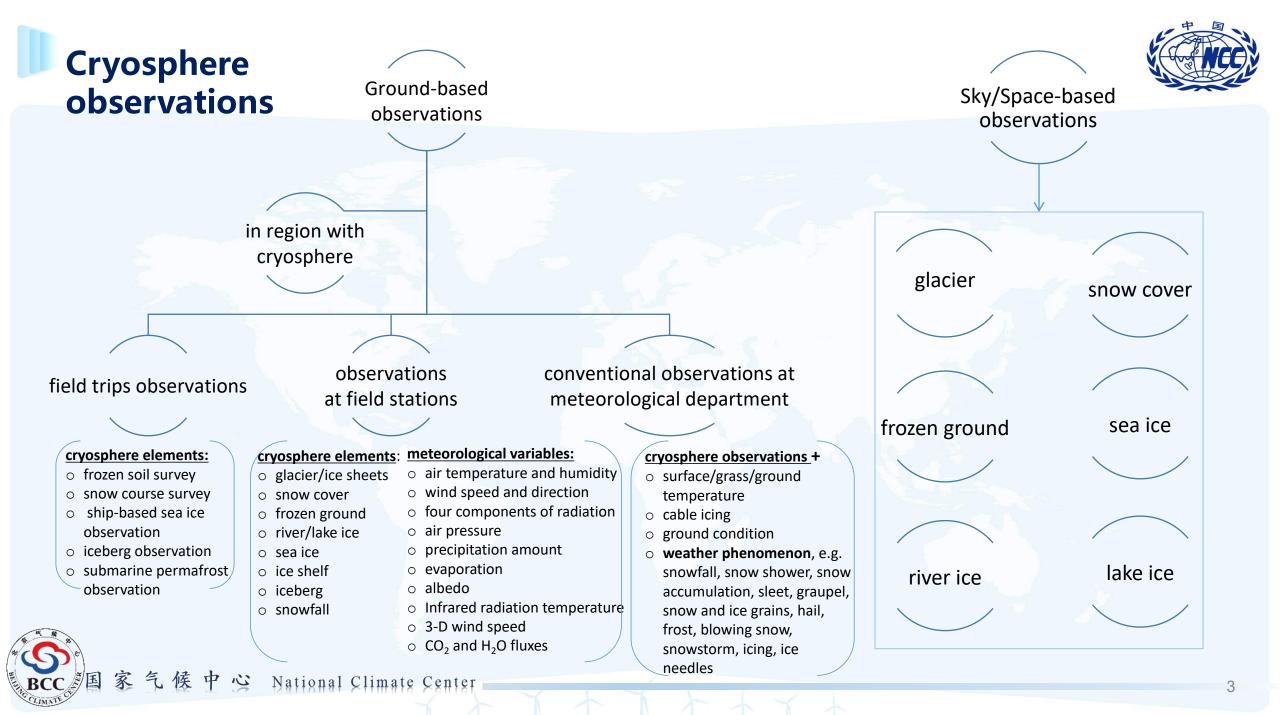
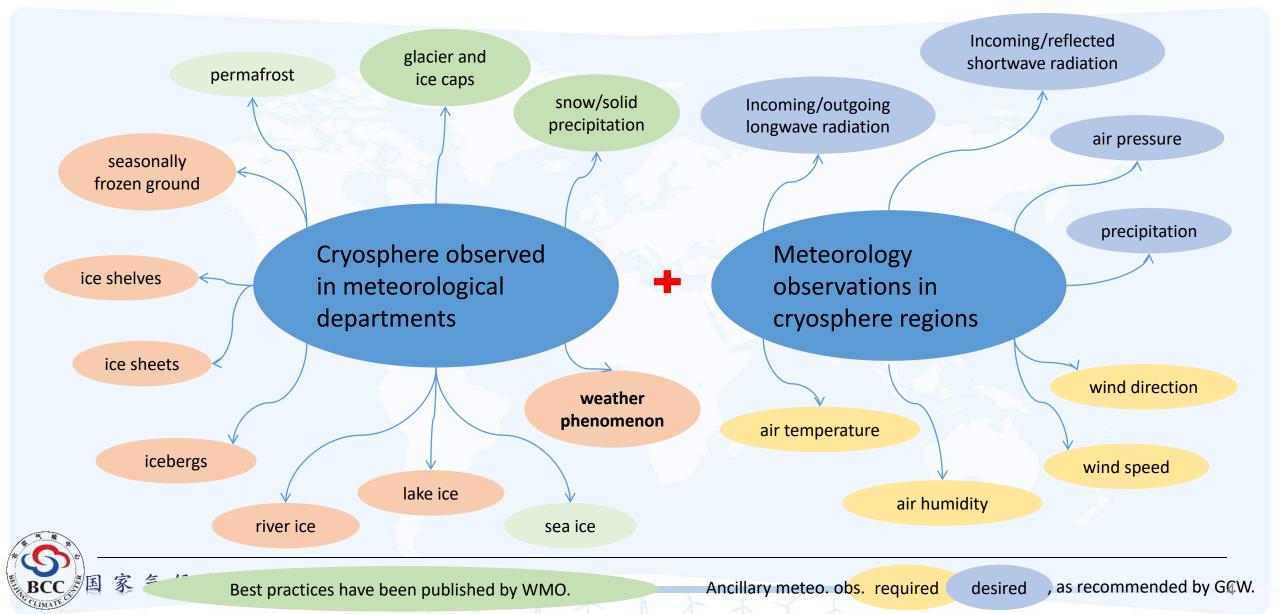
International Training Course on Cryosphere Observation, Monitoring, and Research along B&R, Lanzhou, China

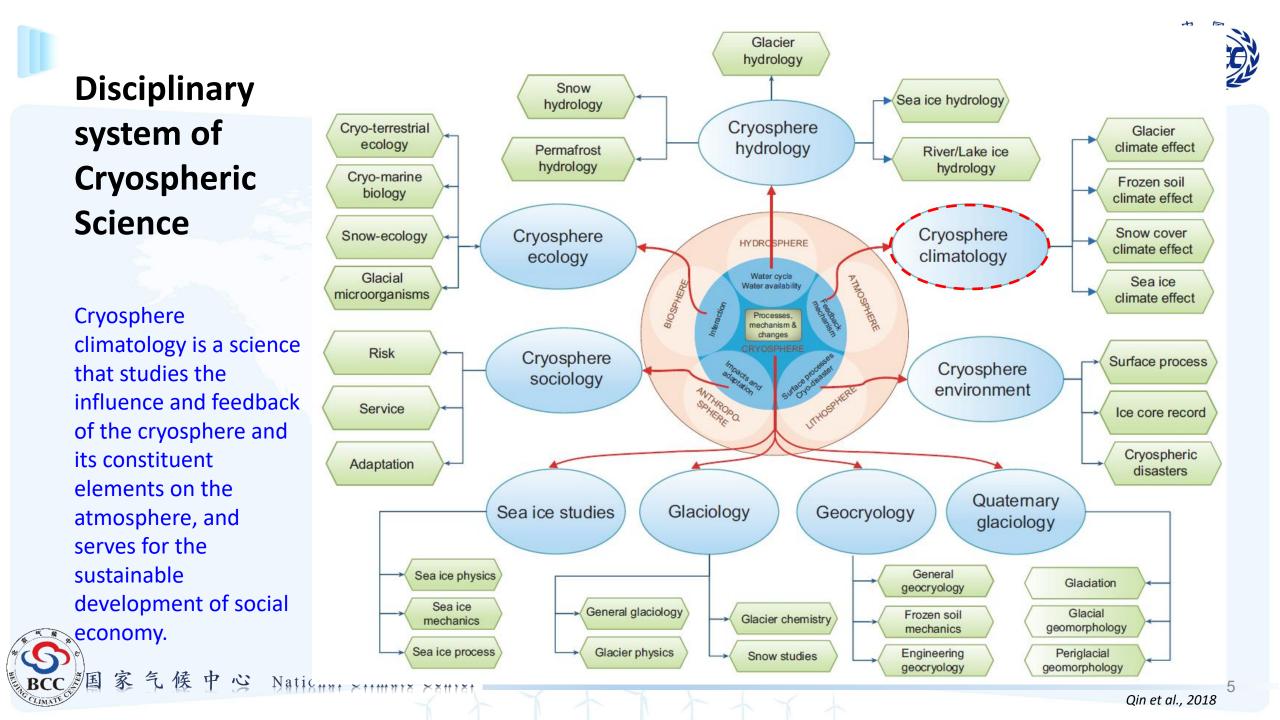
Cryosphere meteorological observations

MA Lijuan


Senior Research Scientist National Climate Center, China Meteorological Administration

17 August, 2024


Outline


Cryosphere meteorological observations
 Climatic monitoring application
 The way of an operational cryosphere

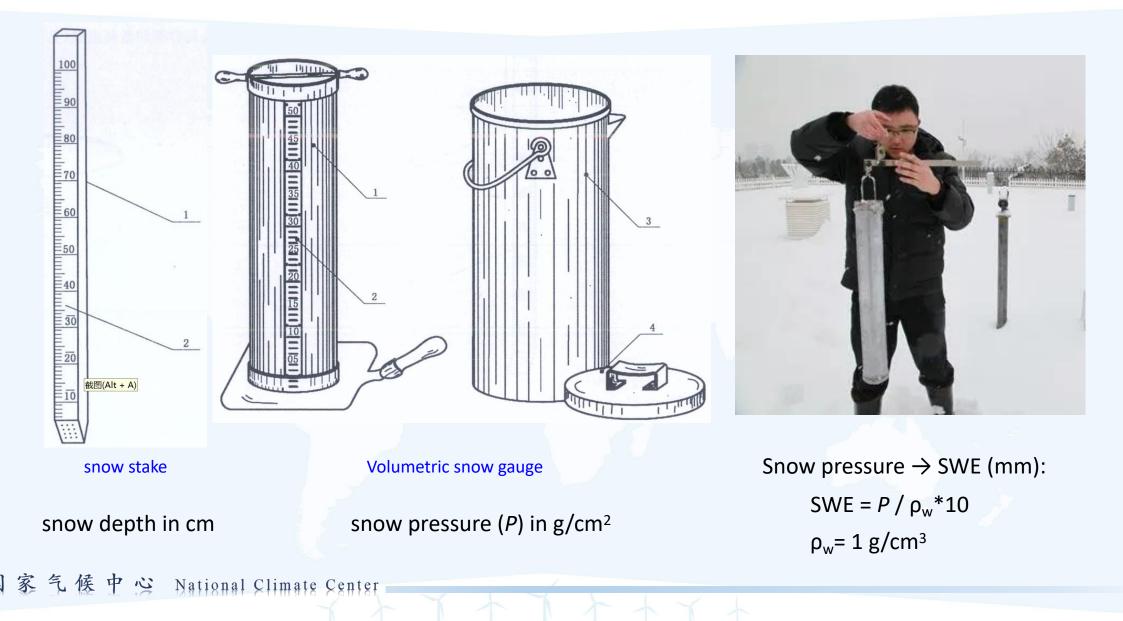
1. Cryosphere meteorological observations

Follow relevant specifications/best practices released by WMO

Guide to Instruments and Methods of Observation Volume II – Measurement of cryospheric variables 2023 edition WORLD METEOROLOGICAL ORGANIZATION WMO-No. 8

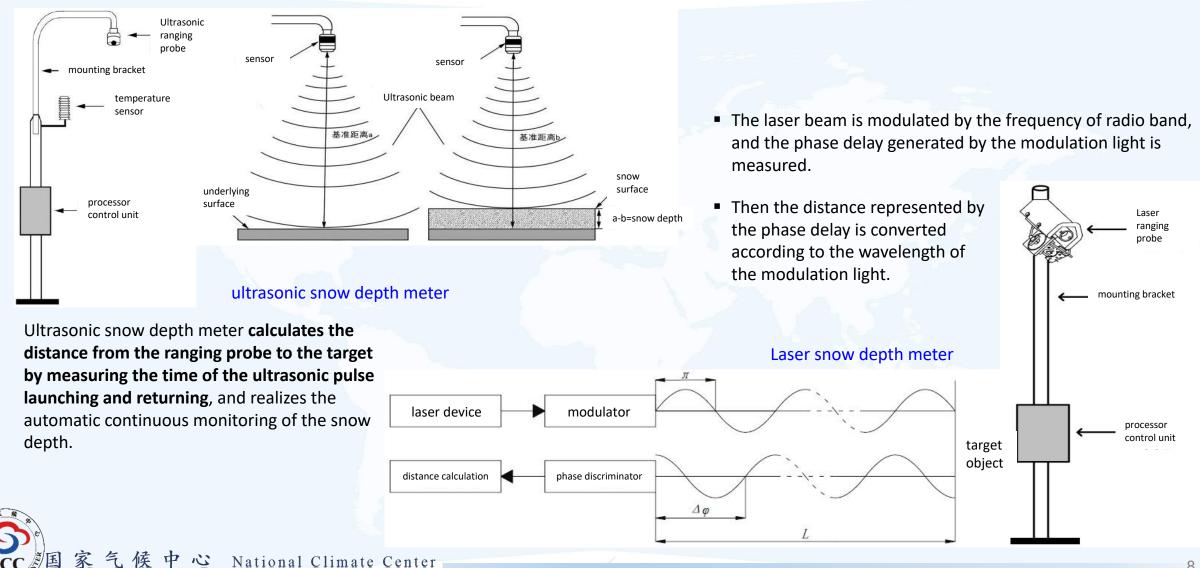
VOLUME I	MEASUREMENT OF METEOROLOGICAL VARIABLES	VOLUME III	OBSERVING SYSTEMS
Chapter 1	General	Chapter 1	Measurements at automatic weather stations
Chapter 2	Measurement of temperature	Chapter 2	Measurements and observations at aeronautical meteorological stations
Chapter 3	Measurement of atmospheric pressure	Chapter 3	Aircraft based observations
Chapter 4	Measurement of humidity	Chapter 4	Marine observation
Chapter 5	Measurement of surface wind	Chapter 5	Special profiling techniques for the boundary layer and the troposphere
		Chapter 6	Electromagnetic methods of lightning detection
Chapter 6	Measurement of precipitation	Chapter 7	Radar measurements
Chapter 7	Measurement of radiation	Chapter 8	Balloon techniques
Chapter 8	Measurement of sunshine duration	Chapter 9	Urban observations
Chapter 9	Measurement of visibility	Chapter 10	Road meteorological measurement
Chapter 10	Measurement of evaporation	VOLUME IV	SPACE-BASED OBSERVATIONS
Chapter 11	Measurement of soil moisture	Chapter 1	Introduction
Cha <mark>p</mark> ter 12	Measurement of upper-air pressure, temperature and humidity	Chapter 2	Principles of Earth observation from space
Chapter 13	Measurement of upper wind	Chapter 3	Remote-sensing instruments
Chapter 14	Observation of present and past weather; state of the ground	Chapter 4	Satellite programmes
Chapter 15	Observation and measurement of clouds	Chapter 5	Space-based observation of geophysical variables
		Chapter 6	Calibration and validation
Chapter 16	Measurement of atmospheric composition	Chapter 7	Cross-cutting issues
VOLUME II	MEASUREMENT OF CRYOSPHERIC VARIABLES	VOLUME V	QUALITY ASSURANCE AND MANAGEMENT OF OBSERVING SYSTEMS
Chapter 1	General	Chapter 1	Quality Management
Cha <mark>p</mark> ter 2	Measurement of snow	Chapter 2	Sampling meteorological variables
Chapter 3	Measurement of glaciers	Chapter 3	Data reduction
1		Chapter 4	Testing, calibration and intercomparison
https://lib	rary.wmo.int/viewer/68660/download?file=8_II-	Chapter 5	Training of instrument specialists

https://library.wmo.int/viewer/68660/download?file=8_II-2023_en.pdf&type=pdf&navigator=1_


adapt at national level according to availability, resources, etc. of instruments

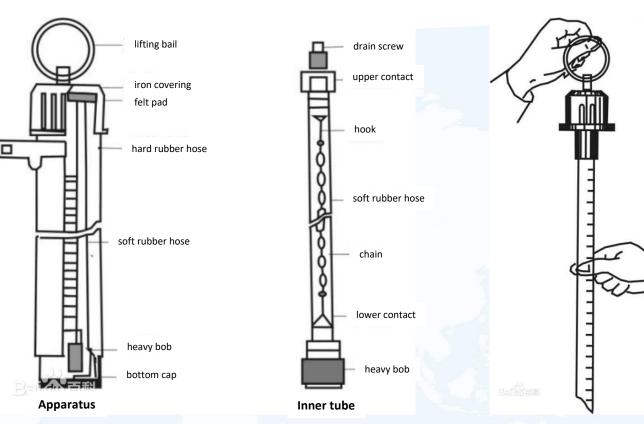
BCC 4

Snow cover – manual observation of snow depth and snow pressure


GB/T 35229-2017

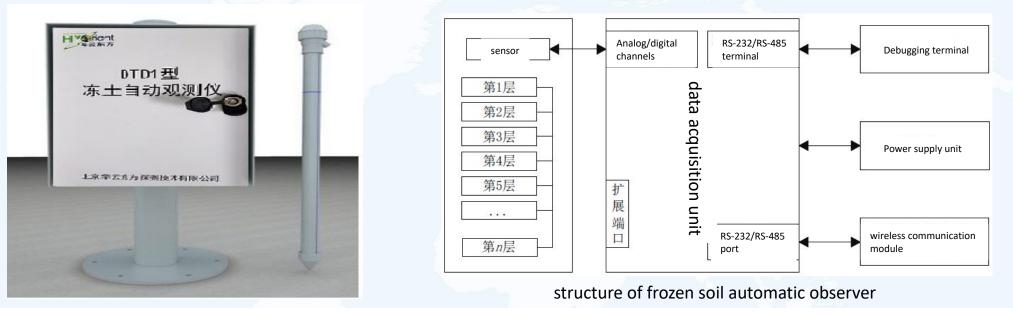
Snow cover – automatic observation of snow depth

Frozen Ground – manual observation of depth of frozen soil



frozen soil apparatus

When the ground temperature drops to 0°C or below and the soil begins to freeze, the frozen soil is observed once a day at 8 o'clock until the soil is completely thawed the following year.


- lift the iron cover and the inner tube with one hand
- use the other hand to touch the position of ice in the inner tube
- read the corresponding scale number at both ends of the ice, representing the upper and lower depth of the frozen layer, respectively
- record the number of depth in the observation book
- reinsert the inner tube and close the cover
- mark both the upper and lower limits as "0" when the scale number is less than 0.5cm

候中心 National Climate Center

Frozen Ground – automatic observation of freezing layers and freezing depth (cm)

According to the **freeze-thaw characteristics of soil containing water**, the automatic observation instrument uses **thresholds** to judge the freezing layers and depth of frozen soil by measuring water phase, soil frequency domain reflection (FDR) or temperature identification.

frozen-resistance type

Based on the principle that physical properties of water volume and resistance will change with the water phase changes, the freezing level and upper and lower depths of frozen soil are obtained by measuring the relevant physical properties using non-pure water as induction medium.

capacitor type

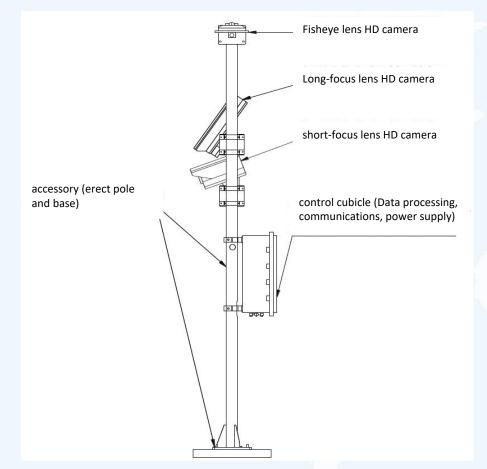
The frequency of LC oscillation circuit responds to **changes in water dielectric constant when there is phase changes of water in soil**. The discriminant model of soil freeze-thaw state was established according to the frequency variation rule and soil temperature, and the freezing level and upper and lower depths are obtained.

thermometric type

The freezing level and upper and lower depths are obtained according to the characteristic of **temperature changes when water condensing into ice or ice melting into water**, combined with the freezing point determination algorithm.

Weather phenomenon – manual observations

GB/T 35224-2017


现象名称	符号	现象名称	符号	现象名称	符号	现象名称	符号
雨		冰粒		雪暴		大风	
阵雨		冰雹		烟幕		飑	
毛毛雨		露		霾		龙卷	
雪		霜		沙尘暴		尘卷风	
阵雪		雾凇		扬沙		冰针	
雨夹雪		雨凇		浮尘		积雪	
阵性雨夹雪		雾		雷暴		结冰	
霰		轻雾		闪电			
米雪		吹雪		极光			

- Mark corresponding symbol in the sheet whenever any type of weather phenomena occurs in the visual area.
- Some need to record start and end times, e.g. snowfall, snow shower, sleet, glaze, rime, graupel, snowstorm, etc.
- Some do not need to record start and end times, e.g., snow accumulation, frost, icing, ice needles, etc.

Weather phenomena record sheet

Weather phenomenon – automatic observation

Weather phenomena video intelligent observer

- computer vision principle (total cloud cover, icing, snow accumulation, etc.): a kind of simulation of biological vision by using computer and related equipment. It can obtain 3D information of corresponding scene by processing collected video or picture.
- deep learning principle (cloud shape, ground condensation phenomena – frost, dew, glaze, rime): a kind of algorithm based on artificial neural network for data representation learning.
- Comprehensive identification from multi-source observations (cloud cover, cloud height, ground condensation phenomenon – dew, frost, glaze, rime, visual range disturbance phenomenon – fog, light fog, haze, floating dust, sandstorm, blowing sand, and thunderstorms, snow cover, icing, snow depth and snow pressure, frozen soil and etc.): through the rapid update of numerical products from satellite, sounding, automatic weather station, lightning detection, lightning imaging, uniformly generated at national level and distributed to provincial level.

Anduo Meteorological Observation Station (a.s.l. 4802 m) The highest manned meteo. station in the world.

> Sejra Pass National Meteorological Observation Station (a.s.l. 4720 m) 一 automatic station 礼 倭 中 学 National Climate S

Daxigou Meteorological Observation Station (a.s.l. 3543.8 m) -- close to Urumqi Glacier No.1, Tianshan Mountains

Automatic weather stations for the cryosphere

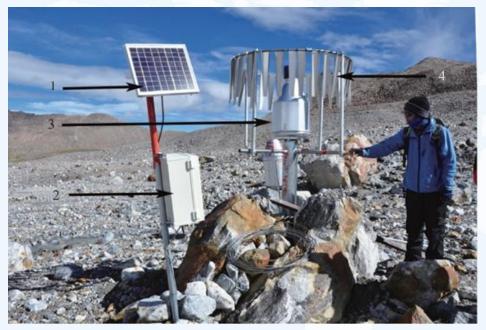
- The arrangement of observations should be flexible, the instruments should be portable, and the meteorological parameters should be observed with unique specifications.
- □ The sensors for meteorological observation must be characterized by **low temperature resistance**, a wide **measurement range**, **high precision** and **easy maintenance**.

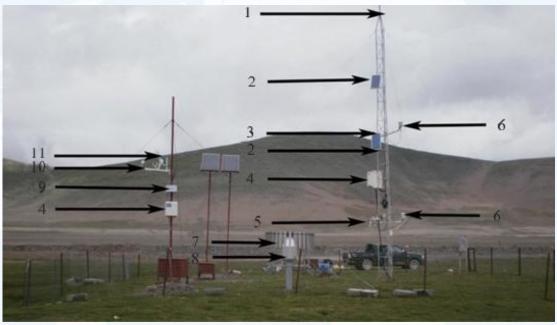
Surface automatic weather site

1. Lightning rod; 2. <u>Wind speed and direction</u> sensor; 3. <u>Snow depth</u> sensors; 4. Data collector; 5. Battery; 6. <u>Temperature and humidity</u> sensors; 7. Solar panels; 8. <u>Four components of radiation</u>

候中心 National Climate Center

Eddy dynamic system on ice surface


- 1. Lightning rod; 2. Temperature and humidity sensor; 3. Data logger;
- 4. Data processor; 5. 3-D ultrasonic wind speed/direction sensor;
- 6. Batteries


① monitor the **meteorological factors affecting** glaciers, snow cover, permafrost and melt water runoff from snow and ice;

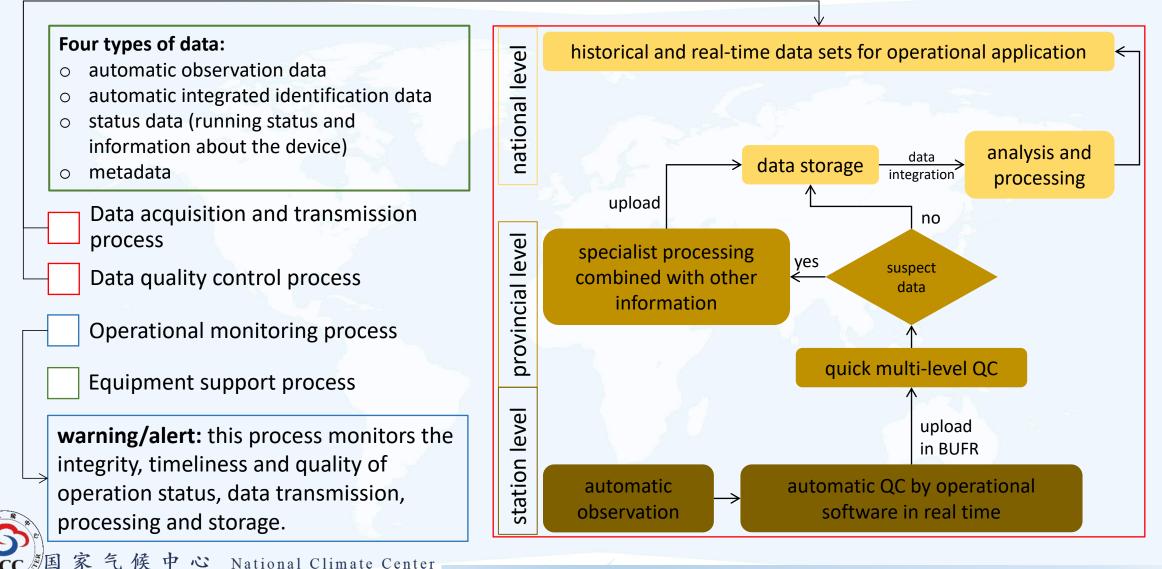
(2) study the **micro-climatic characteristics** of glaciers, snow cover and permafrost regions;

③ the energy-mass exchange characteristics on the surfaces of glaciers and permafrost.

T200B rain gauge 1. Solar panel; 2. Data logger; 3. <u>Rain and snow gauge container</u>; 4. Wind protection fence

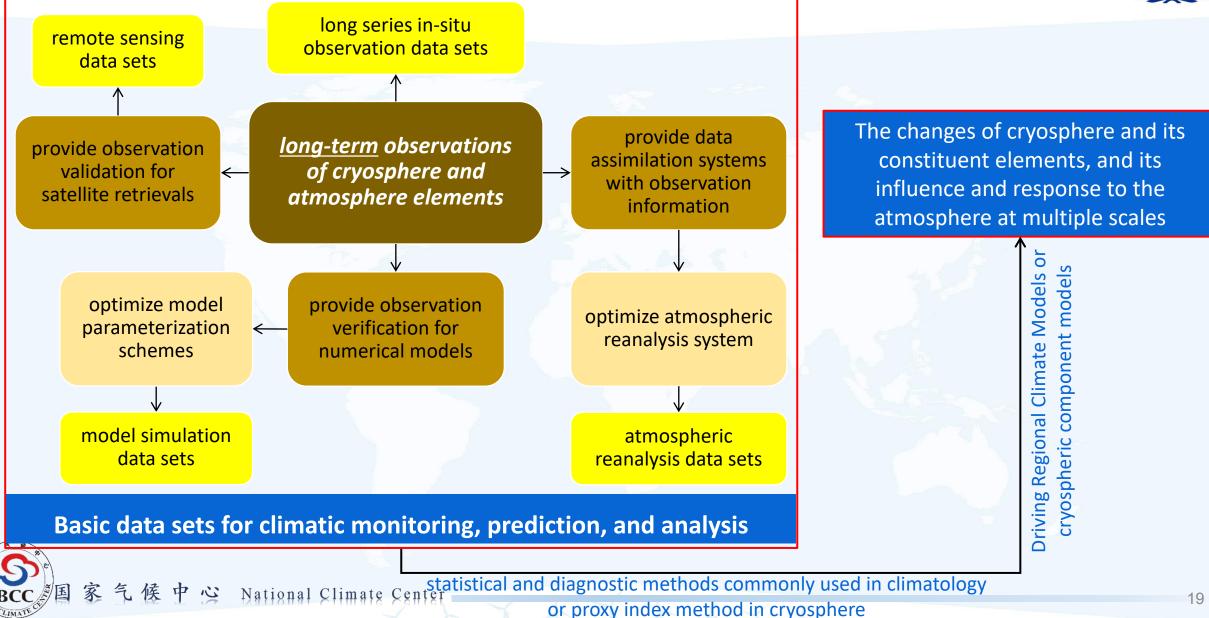
meteorological observation field for permafrost
1. Lightning rod; 2. Solar panels; 3. <u>Wind speed and direction sensor</u>;
4. Data logger; 5. <u>Snow depth sensor</u>; 6. <u>Temperature and humidity</u> collector;
7. Windbreak fence; 8. <u>Snow and rain gauge container</u>; 9. Data processor;
10. <u>CO2/H2O analyzer</u>; 11. 3-D ultrasonic <u>wind speed and direction sensor</u>

候中心 National Climate Center



- On May 4, 2022, an automatic weather station was built at an altitude of 8,830 m on the north slope of Mount Qomolangma, by the second Comprehensive Scientific Expedition to the Qinghai-Tibet Plateau.
- They also built seven automatic meteorological observation stations along the route from 5,200 m to 8,300 m (a.s.l.), marking the initial completion of China's gradient meteorological observation system for Mount Qomolangma. 家
 - 候中心 National Climate Center

Operational process and specification of metadata and raw data collection


Outline

Cryosphere meteorological observations Climatic monitoring application Status of An Operational Cryosphere

General process of applying in-situ observations for cryosphere climatology

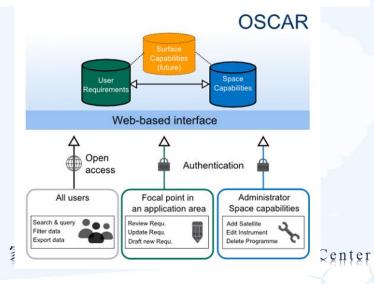
WMO's effort in building observing networks

WMO does not observe by itself, but develop observing networks based on users' needs, in turn to promote improvement of meteo. infrastructure.

WWW: WMO Flagship ProgrammeWIGOS: WMO Integrated GlobalObserving System;WIS: WMO Information System

Observing Network of WMO

National Climate Center



WMO Integrated Global Observing System (WIGOS)

WIGOS Component Systems

- Global Observing System (WWW/GOS)
- Observing component of . Global Atmospheric Watch (GAW)
- WMO Hydrological . Observations (including WHYCOS)
- Observing component of Global Cryosphere Watch (GCW)

(a) WMO OMM

Quick access	Welcome to C
Generate station report by:	OSCAR/Surface is th
Station name	details on OSCAR, pl
WIGOS Station Identifier	*
Generate station lists by:	+
Country	*
Туре	¥
Class	Ŧ

Observed variable Find people by:

Contact name

Filter map

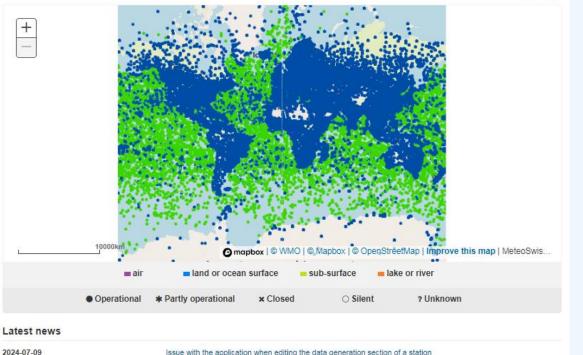
By program / network: Program / network

By reporting status:

Reporting status

By station type:

Station type


Declared O Assessed

=

Station and Observation metadata: **Observing Systems Capability Analysis and Review Tool (OSCAR)**

SCAR/Surface

World Meteorological Organization's official repository of WIGOS metadata for all surface-based observing stations and platforms. For more ease visit the About section. For additional information about WIGOS, visit the WIGOS Homepage. X ±

Issue with the application when editing the data generation section of a station

Approved GISCs

Updated: 02 June 2022

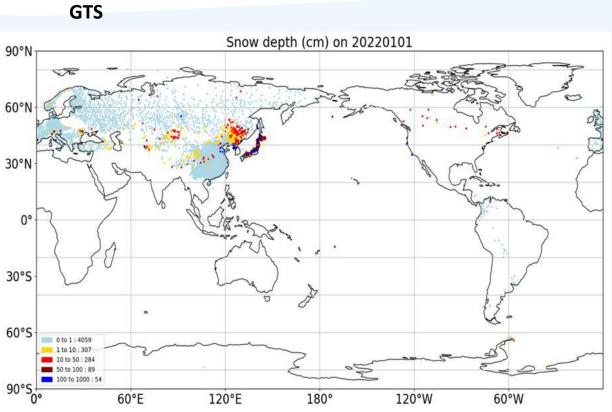
WMO Information System (WIS) World Radiation Centre International Regional Instrument organizations (IAEA, Centres CTBTO, UNEP, FAO, etc.) DCPC Internet Internet NC NC Area Meteorological Data Communication Networks GAW World Data Centres IRI and other climate GCOS Data Centres NC/ DCPC GISC NC/ DCPC research institutes Global Runoff Data Centre Universities Global Precipitation Regional Climate Climatology Centre GISC GISC Centres WIS core Commercial service NC NC network providers GISC GISC NC NC DCPC DCPC Internet Internet WMO World Data Centres, Satellite two-way min international projects system NC NC NC NC Satellite dissemination (IGDDS, EUMETSAT, etc.) CTBTO = Comprehensive Nuclear-Test-Ban Treaty Organization GISC = Global Information System Centre DCPC = Data Collection or Production Centre IAEA = International Atomic Energy Agency EUMETSAT = European Organization for the Exploitation of IGDDS = Integrated Global Data Dissemination Service Meteorological Satellites IRI = International Research Institute for Climate and Society = Food and Agriculture Organization of the NC = National Centre United Nations UNEP = United Nations Environment Programme = Global Atmosphere Watch = Real-time "push" GCOS = Global Climate Observing System = On-demand "pull" 家 候 ŝ

National Climate Center

Key:

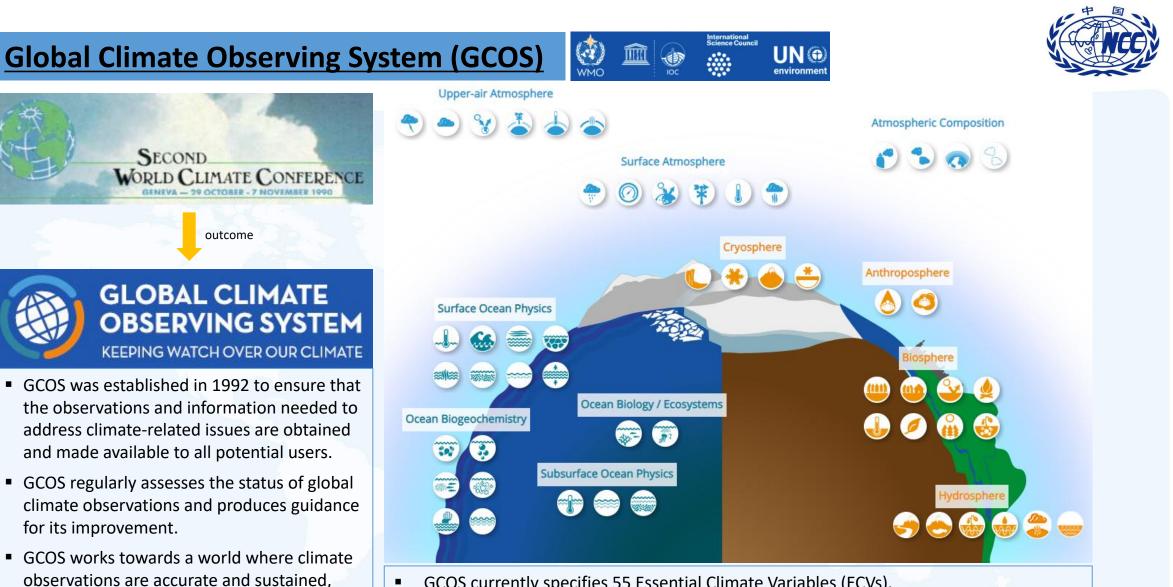
FAO

GAW


中

	Up	ualed	1: 02 June 2022					
Region	Country		Global Information System Centres (GISCs)					
I.	Morocco		Casablanca					
Ī	South Africa		Pretoria					
II	China		Beijing (offering Interim Metadata Management Service)					
	India		New Delhi					
Π	Iran		Tehran					
[]	Japan		Tokyo (offering Interim Metadata Management Service)					
II	Republic of Korea		Seoul					
ļ	Saudi Arabia		Jeddah (not operational)					
	Brazil		Brasilia					
IV	United States of America		Washington					
V	Australia		Melbourne (not reachable)					
VI	France		Toulouse					
VI	Germany		Offenbach					
VI	Russian Federation		Moscow					
VI	United Kingdom of Great Britain Northern Ireland	and	d Exeter (not reachable)					
www	V Centres	WIS	WIS Centres					
NM	с	NC						
RSMC D		DC	DCPC					
WMC D		DC	DCPC and/or GISC					
RTH	l	DC	DCPC					
RTH	l on MTN	DC	DCPC and/or GISC					
Oth	ers	NC	and/or DCPC					

OSCAR/Surface


Daily snow depth data shared via GTS (January 1, 2022)

豕

2438 stations/platforms are registered with snow depth observations

て修工心 National Climate Center

- GCOS currently specifies 55 Essential Climate Variables (ECVs).
- An ECV is a physical, chemical or biological variable or a group of linked variables that critically contributes to the characterization of Earth' s climate.

and access to climate data is free and open.

Terrestrial				
ECV	ECV Product 2016	ECV Product 2022		
	Area Covered by Snow	Area Covered by Snow		
Snow	Snow Depth	Snow Depth		
	Snow-Water Equivalent	Snow-Water Equivalent		
	Glacier Area	Glacier Area		
Glaciers	Glacier Elevation Change	Glacier Elevation Change		
	Glacier Mass Change	Glacier Mass Change		
	Surface Elevation Change	Surface Elevation Change		
	Ice Velocity	Ice Velocity		
Ice Sheets and Ice Shelves	Ice Mass Change	Ice Volume Change		
Sherves	Grounding Line Location and Thickness	Grounding Line Location and Thickness		
	Thermal State of Permafrost	Permafrost Temperature (PT)		
Permafrost	Active Layer Thickness	Active Layer Thickness (ALT)		
		Rock Glacier Velocity (RGV)		
	Lake Water Level	Lake Water Level (LWL)		
	Water Extent	Lake Water Extent (LWE)		
	Lake Surface-Water Temperature	Lake Surface Water Temperature (LSWT)		
Lakes	Lake Ice Cover	Lake Ice Cover (LIC)		
	Lake Ice Thickness	Lake Ice Thickness (LIT)		
	Lake Colour (Lake Water-Leaving Reflectance)	Lake Water-Leaving Reflectance		
	Surface Soil Moisture	Surface Soil Moisture		
Soil Moisture	Freeze/Thaw	Freeze/Thaw		
Soli Moiscure	Surface Inundation	Surface Inundation		
	Root-Zone Soil Moisture	Root Zone Soil Moisture		
Ocean	•			
ECV	ECV Product 2016	ECV Product 2022		
	Sea Ice Concentration	Sea Ice Concentration		
	Sea Ice Thickness	Sea Ice Thickness		
	Sea Ice Drift	Sea Ice Drift		
Sea Ice	Sea Ice Extent/Edge	Sea Ice Age		
		Sea Ice Surface Temperature (IST)		
		Sea ice Surface Albedo		

Snow Depth on Sea Ice

- **ECV** are identified based on the following criteria:
 - **Relevance**: The variable is critical for characterizing the climate system and its changes.
 - Feasibility: Observing or deriving the variable on a global scale is technically feasible using proven, scientifically understood methods.
 - Cost effectiveness: Generating and archiving data on the variable is affordable, mainly relying on coordinated observing systems using proven technology, taking advantage where possible of historical datasets.
- **ECV** datasets provide the empirical evidence needed to understand and predict the evolution of climate, to guide mitigation and adaptation measures, to assess risks and enable attribution of climate events to underlying causes, and to underpin climate services.

GCOS Observation requirements for ECV products -- take snow for example

ame	Area Covered by Snow																								
inition						e (ground, ice sea				in															
						present, such as	forest c	anopies cover	ed by																
	snow	at a given time.	Some	times called	d "viewable	e snow".																			
it	km ²																								
te	Area	covered by snow	is obs	served in-si	tu and by	satellite (Robinsor	, 2013	; Frei et al., 20	012). T	The															
						millimeters of sno	ow dept	h. The microw	ave																
	radio	meter can detect	at firs			rs of snow depth.																			
				Requi	irements																				
em needed	Unit	Metric	[1]	Value	Notes	Name	Snow	Depth																	
rizontal	m	Size of grid	G	50		Definition		the second s	o porpo	ndicular	distance betw	een snownack s	surface a	and the unde	arlying										
solution		cell	В	500		Demición	Snow thickness is the perpendicula surface (ground, sea ice, lake ice,								inying										
			Т	1000		Unit	m	(9.00.0)	,				,	.,.											
rtical			G	-	N/A	Note																			
solution			B	-	N/A					Re	quirements														
onation			Т	-		Item needed	Unit	Metric	[1]	Value	Notes														
mporal	h	Frequency of	G	6		Horizontal	km	Size of grid	G	0.5		Name	Snov	v-Water Eq	uivale	nt									
solution		measurement		24		Resolution		cell	В	5		Definition					vertical depth of the water that would be obtained if the snow								
Solution		measurement	Т	48					т	25	The resolution	(ates to the snow-cover mass per unit area.								
neliness	h		G	3							coverage in		mm												
			В	24						m	mountain a	Note													
			Т	240		Vertical			G	-	N/A	1992					Requirements								
uired	%		G	5		Resolution					в	-		Item	Unit	Metric	[1]	Value	Notes						
asurement	10						d		т	-		needed		c: (0	0.5									
certainty			В	15						4	d G	d								Horizontal	km	Size of	G	0.5	
-sigma)			Т	20		Temporal			B				-			Resolution		grid cell	В	5	These horizontal resolutions apply to non-mountain snow				
	%		G	1		Resolution				B 24	24					Т	25	covered regions only.							
ability	%0		B	1 5					Т	48		Vertical			G	-	N/A								
			Т	10		Timeliness	h	h	h	h	h	h	h	h	h	h (G	1		Resolution			В	-	
				10					В	6					т										
									D							6									
_									Т	24		Temporal Resolution	h		G	6									
G=	Goal					Required	mm		G	10		Resolution			В	24									
P	Brook	through				Measurement			в	25			_		Т	48									
		-				Uncertainty			т	50		Timeliness	h		G	3									
T=	Thres	hold				(2-sigma)									В	24									
						Stability	cm		G	1					-										
									В	2						240									
									Т	5		Required Measuremer	mm		G	1	For mountain areas 20%								
												t Uncertaint y (2-			В	5	For mountain areas 30%								
												sigma)			Т	10	For mountain areas 40%								
roe	auir	ements a	at c	Tohal	lovo	1 A 1 A						Stability	mm		G	5									
	quin	ements a	JLE	sional	ievel	All and and									В	8									
e:															_										
															Т	10									

候中心 National Climate Center

家

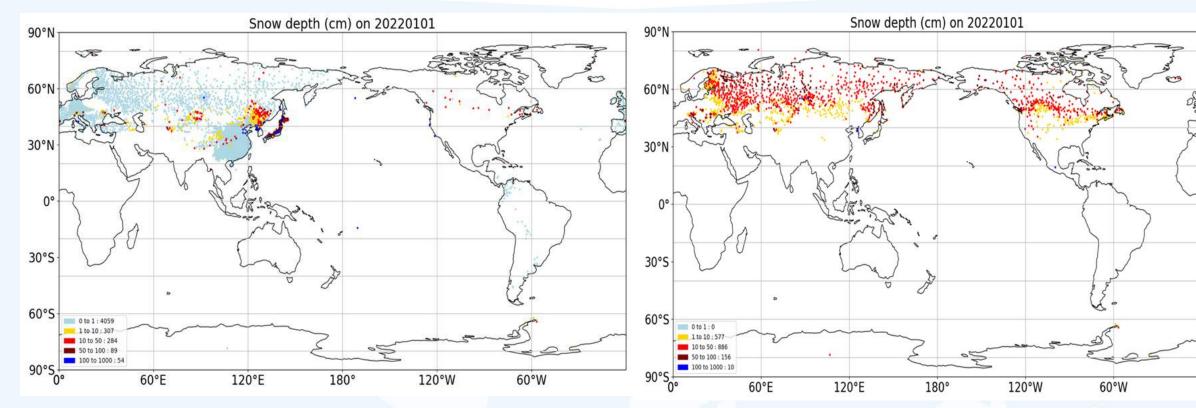
BC

In WMO framework

https://globalcryospherewatch.org/cryonet/variables/recommended_variables.html

SNOW/SOLID PRECIPITATION	Recommended minimum frequency of	observations at CryoNet static		SEA ICE	Recommended	minim	um freque	ncy of obs	ervations a	at CryoNet st
		mescale				70.			scale	
Variable		(ly monthly half-yearly yea		Variable	hourly	daily	weekly k	oi-weekly	monthly h	half-yearly
Snow on the ground	M(S)	in monthy han-yearly yea		Sea ice thickness	А			м		
(According to WMO code 0975:				Sea ice freeboard	А	_		м		
State of ground with snow or measurable ice of	cover.)	100		Sea ice concentration		A, M				
Snow depth	A(S, G, SI, LRI) M(S) M(SI, LI	RI) M(G		Sea ice class (pack, fast ice)		м			1	
(including stake farms and snow <mark>GLACIER</mark>		Recommende	d minimur	Sea ice type (level/rafted/ridged & floe descriptor)		м				
Snow depth				Form of ice (floe size)			м			
(including stake farms and snov			- T - T	Stage of ice development			м			
Snow water equivalent	Variable	hourly	daily v	Sea ice phenomena (dates of freeze-up, fast-ice formation/breakout, melt onset, break-up)			A/M			
Solid precipitation	Surface accumulation (point)	Α		Sea ice stage of melting	-	м				
(Requires <u>both</u> amount and type of pr	Surface ablation (point)	SHEETS		Sea ice openings (leads, polynyas, cracks)		A				
measured)	Surface mass balance (glacier wide			Sea ice velocity	А	M				
Snow profiles (density, grain shape & size, hardne:	Surface mass balance (point)	Variable		Sea ice deformation (divergence/convergence)	Α	м				
salinity, temperature)		Surface accumulati	ion (point)	Sea ice ridge height	A	м				
Snow profiles (density, grain shape & size, hardnes	Glacier area (glacier wide)	Surface ablation	and and and	Capica ridge cover (concentration of ice ridges)	۸					
salinity, temperature)	Surface accumulation (glacier wid	Surface mass balan		LAKE ICE	Recommended	minimu	um frequer			CryoNet st
Douth of anouifall	Surface ablation (glacier wide)	Ice sheet thicknes	and a strength					Times	Ť.	
Depth of snowfall Water equivalent of snowfa	Basal Ablation (point)	Ice velocity (p		Variable Ice thickness	hourly A	daily	weekly b	M	monthly h	alf-yearly
	Glacier thickness (point)	Ice/firn temperature p		Ice concentration	A	A, M		IVI		
Snow cover extent				Ice class (pack, fast ice)		M				
Snow chemistry	Glacier volume (glacier wide)	ommended i	measuremer	Ice type (level/rafted/ridged & floe descriptor)		M			1.1	
PERMAFROST	Recommended minimum frequency of obs	ervations at CrvoNet static		Form of ice (floe size, fast ice width)			м		6	
	ICEBERGS		Recommer	Stage of ice development			м			
Variable Ground temperature	Veriek	le.	hourh	Ice phenomena (dates of freeze-up, fast-ice formation/breakout, melt onset, break-up)			A/M			
Active layer thickness	Variab		hourh	Ice stage of melting	-	м				
Rock glacier creep velocity	Iceberg po	sition		Areal extent of floating/grounded ice			м		1	
	Iceberg for	m, size	1 E	Ice surface temperature	А					
Rock glacier discharge	Concentration (dista	nce) of icebergs	-	Ice openings (leads, polynyas, cracks)		Α				
Rock glacier spring temperature	lceberg m	otion		Ice velocity	Α	М				
seasonal frost heath/subsidence	Iceberg height (al	pove the sea)		Ice deformation (divergence/convergence)	А	м				
surface elevation change	Iceberg width, lengt			Ice ridge height	Α	м				
ground ice volume				Ice ridge cover (concentration of ice ridges)	Α	м				
	looporg (iratt		lee stratigraphy				м		27
coastal retreat	Iceberg of Underwater			Ice stratigraphy						

WMO Rolling Review of Requirement (RRR)

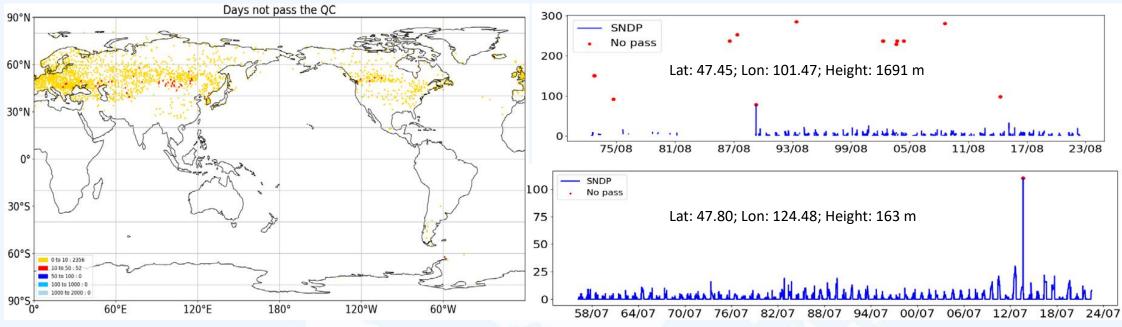

	ESAC	Application areas
	1. Space Weather Applications	 1.1 Sun, Heliosphere and Solar Wind Forecasting and Monitoring 1.2 Energetic Particle and Magnetosphere Forecasting and Monitoring 1.3 Ionosphere, Thermosphere and Geomagnetic Field Forecasting and Monitoring
	2. Atmospheric Applications	 2.1 Global Numerical Weather Prediction and Real-time Monitoring 2.2 High-Resolution Numerical Weather Prediction 2.3 Nowcasting / Very Short-Range Forecasting 2.8 Aeronautical Meteorology 2.9 Agricultural Meteorology 2.6 Atmospheric Composition Forecasting and Monitoring 2.7 Atmospheric Composition Information Services in Urban and Populated Areas 2.4 Sub-Seasonal to Longer Predictions 2.5 Atmospheric Climate Monitoring
	3. Oceanic Applications	3.1 Ocean Forecasting and Real-Time Monitoring 3.2 Coastal Forecasting 3.3 Oceanic Climate Monitoring and Services 3.4 Tsunami Monitoring and Detection 3.5 Marine Environmental Emergency Response 3.6 Maritime Safety (ports to open ocean) 3.7 Ocean Biogeochemical Cycles
	4. Hydrological and Terrestrial Applications	4.1 Hydrological Forecasting and Real-time Monitoring 4.2 Hydrological and Terrestrial Climate Monitoring
8	5. Cryospheric Applications	5.1 Terrestrial Cryosphere Forecasting and Monitoring 5.2 Sea-Ice Forecasting and Monitoring 5.3 Cryospheric Climate Monitoring
)	6. Integrated Earth System Applications	6.1 Earth System Forecasting and Monitoring 6.2 Understanding Earth System Processes

6 Earth System Application Categories and 26 Application Areas:

- Category 5: Cryospheric Applications
- Application area 5.1 includes snow, glaciers and permafrost, ice caps, glaciers;
- Climate Monitoring are split into different Categories, e.g. 5.3 Cryosphere Climate Monitoring, 2.5 Atmospheric Climate Monitoring
- GCW works with GCOS to harmonize the cryosphere variables and ECVs products, and corresponding observing requirements.

CMA's effort in producing data sets for climatic application

Daily snow depth data shared via GTS (January 1, 2022)


GTS snow depth data are sparse in North America.

□ In Eurasia, big differences exist in GTS and GSOD snow depth.

Daily snow depth data based on GSOD for January 1, 2022

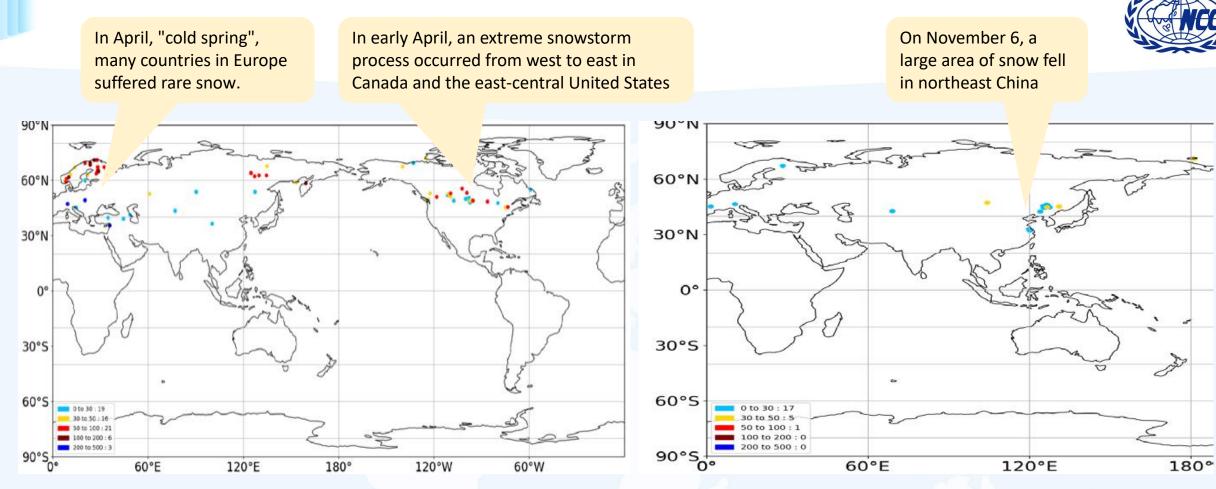
The storage of snow depth data in global BUFR format were inconsistent with those in TAC format, resulting in misalignment of snow depth data in Eurasia.

Climate outlier check for historical snow depth data set

stations with climate outliers that are verified from historical data

- Threshold value: The 95th percentile of daily snow depth of all stations within the 1-degree grid from January to December was calculated using historical daily snow depth data from 1943 to 2022, and the 5* 95th percentile of snow depth value in each grid point was used as the threshold of climate outliers for all stations within the grid point;
- □ A total of 2408 stations had outlier problems, 52 of which contained outliers recorded more than 10 days, and the maximum number of outliers recorded at a single station was 15 days.

Quality control algorithm flow for historical snow depth data set


The number of suspect data records identified by different quality control steps from 1943 to 2022

Quality control process code meaning	Number of stations with suspect data	Number of suspect data records (and ratio)
Metadata check	207	17623 (0.03%)
Valid value check	0	0
Climate outlier check	2408	5953 (0.009%)
Time consistency check	358	457 (0.0007%)
Cooperative temperature check	2249	6366 (0.01%)
Spatial consistency check	42	1047 (0.002%)
Duplicate value check	226	66667 (0.1%)

气

候

家

On April 1, 2023, stations that exceeded the historical extreme value of the month

On Nov. 6, 2023, stations that exceeded the historical extreme value of the month

□ After QC, it can monitor extreme events quickly and quantitatively.

□ The extreme blizzard events in 2023 were well captured.

候中心 National Climate Center

家

Quality control method for snow depth data set

□ Hourly snow depth quality control algorithm

- USA MADIS: effective value check (0-762 cm), internal consistency check (maximum snow water equivalent must not exceed the total amount of snow equivalent observed at the same station), time consistency check (difference between each observation <127 cm)
- China MDOS: threshold value check (0-1000 cm), internal consistency check (snow depth >0 cm when there is snow)

Daily snow depth quality control algorithm

- USA GHCN-Daily: duplicate value check (90 days and above), extreme value check (<1146 cm), abrupt value check, and temperature consistency check (when the snow depth increases, the minimum value of minimum temperature < 7°C), the consistency check with snowfall and precipitation, the spatial consistency check with snowfall and temperature, the time consistency check (daily growth <192.5 cm), the snow season authenticity check in the northern and southern hemispheres (SNWD > 0 from May to October, SNWD=0 from November to April) (Durreet al.,2010)
- Canada: Major range check (95th percentile), time consistency check (change less than 45 cm), precipitation and temperature coordination check, spatial consistency check (30 cm), QC of daily snow depth values in different climate zones (Baronettiet al., 2019)

GCW data portal -- to enable a one-stop search for cryospheric data sets

P 🖄 National Climate Center

家

WMO Stewardship Maturity Matrix -- for assess data centres that manage climate data sets

	ightarrow SMM-CD category $ ightarrow$							
	Data access	Usability and usage	Quality management	Data management				
↓ Aspect	Discoverability	Data portability	QA and QC procedure	Preservation				
Ţ	Accessibility	Documentation	Quality assessment	Metadata				
		Usage and impact	Data integrity	Governance				

Scale and structure	Maturity scale levels for each aspect							
spects	Level 1 (ad hoc)	Level 2 (low)	Level 3 (medium)	Highly desirable				
ries/a	Ad hoc	Intermediate	Advanced	Optimal				
Categories/aspects	Not managed	Limit-managed	Managed	Level 3 plus additional features				
Ũ	Not implemented	Partially implemented	Fully implemented	(see text following)				

useful links:

The Stewardship Maturity Matrix for Climate Data (SMM-CD) The SMM-CD for National and Regional Purposes (SMM-CD_NRP) assessment template Guidance Booklet: WMO Stewardship Maturity Matrix for Climate Data (WMO-No. 1328)

家

WMO Catalogue for Climate Data

limate C

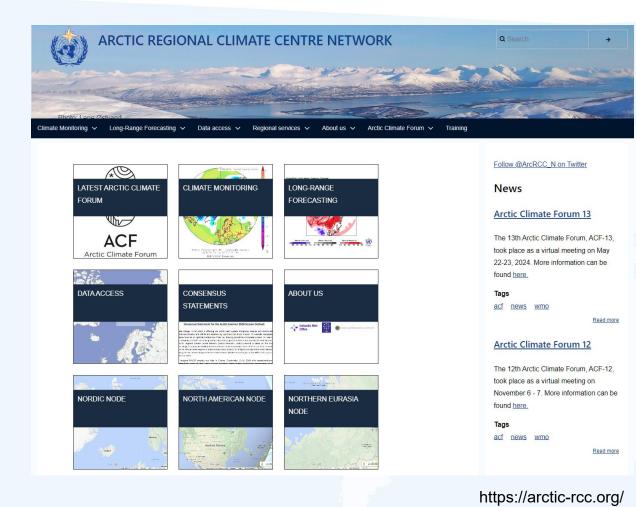
in a

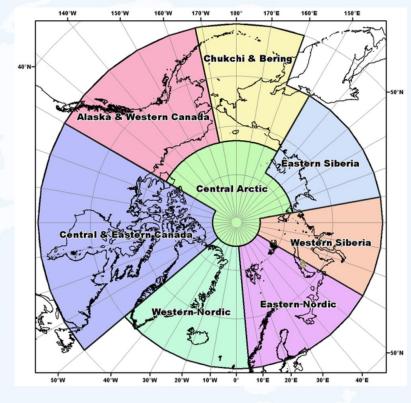
Listed Global datasets were assessed using the WMO Stewardship Maturity Matrix for Climate Data (<u>SMM-CD</u>).

Type of data					
Glaciers	 Apply 				
Global Land Ice Measurements from Space (GLIMS)	Type of data				
Assessment: WMO-SMM-CD_GLIMS_v03r00_20190319	Ice Sheets				
Data access: GLIMS: Global Land Ice Measurements from Space	ice sneets				
Data point of contact: Bruce Raup; braup@nsidc.org; National Snow and Ice Data Center					
Assessment point of contact: Bruce Raup; braup@nsidc.org; National Snow and Ice Data Center	GLAS/ICESat 500 m Laser Altimetry Digital Elevation Model of Antarctica, Version 1 (NSIDC-0304)				
	Assessment: GLAS-DEM/WMO-SMM-CD_GLAS-DEM-500m_v01r01_20190318				
Type of data	Data access: Cloud Datasets PO.DAAC (nasa.gov) Dataset point of contact: User services; podaac@podaac.jpl.nasa.gov; PODAAC				
Sea Ice	Assessment point of contact: Amy Steiker; amy.steiker@nsidc.org; NSIDC				
	Greenland Mass Variability Time Series Version 1 from JPL GRACE Mascon CRI Filtered				
Sea Ice Index, version 3	Assessment: WMO-SMM-CD_Greenland-GRACE_v02r00-20190131 Data access: Cloud Datasets PO.DAAC (nasa.gov) Dataset point of contact: User services: podaac@podaac.jpl.nasa.gov; PODAAC				
Assessment: Sea-Ice-Index-v3_WMO_SMM-CD_v01r01-20190429					
Data access: Sea Ice Index, Version 3 National Snow and Ice Data Center (nsidc.org)	Assessment point of contact: Amy Steiker; amy.steiker@nsidc.org; NSIDC				
Dataset point of contact: Florence Fetterer; fetterer@nsidc.org; NSIDC	······				
Assessment point of contact: Florence Fetterer; fetterer@nsidc.org; NSIDC					
	Antarctic 1 km Digital Elevation Model (DEM) from Combined ERS-1 Radar and ICESat Laser Satellite Altimetry, Version 1				
	Assessment: GLAS-DEM/WMO-SMM-CD_GLAS-DEM-1km_v01r01_20190318 Data access: Antarctic 1 km Digital Elevation Model (DEM) from Combined ERS-1 Radar and ICESat Laser Satellite Altimetry, Version 1 National Snow and Ice				
	Center (nsidc.org)				
	Dataset point of contact: Amy Steiker; amy.steiker@nsidc.org; NSIDC				
	Assessment point of contact: Amy Steiker; amy.steiker@nsidc.org; NSIDC				
	Antarctica Mass Variability Time Series Version 1 from JPL GRACE Mascon CRI Filtered				
	Assessment: WMO-SMM-CD_Antarctica-GRACE_v01r01_20190310				
https://climatedata-catalogue-wmo.org/	Data access: Cloud Datasets PO.DAAC (nasa.gov)				
https://ennatedata eatalogue who.org/	Dataset point of contact: User services; podaac.jpl.nasa.gov; PODAAC				
	Assessment point of contact: Amy Steiker; amy.steiker@nsidc.org; NSIDC				

Outline

Cryosphere meteorological observations
 Climatic monitoring application
 The way of an operational cryosphere


The way of an operational cryosphere...

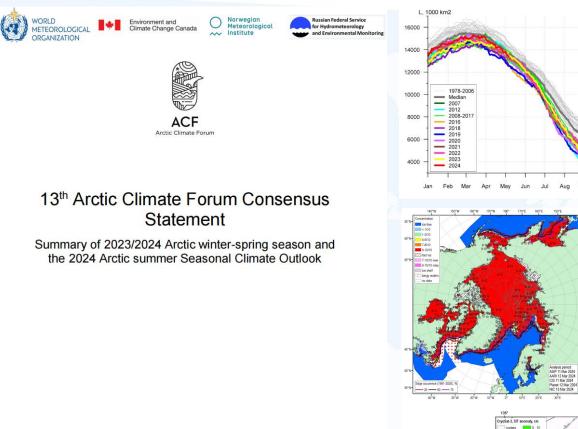


Arctic Regional Climate Centre - Network

2008: WMO's Climate Information and Prediction Services (CLIPS) concept was promoted in Polar Regions.

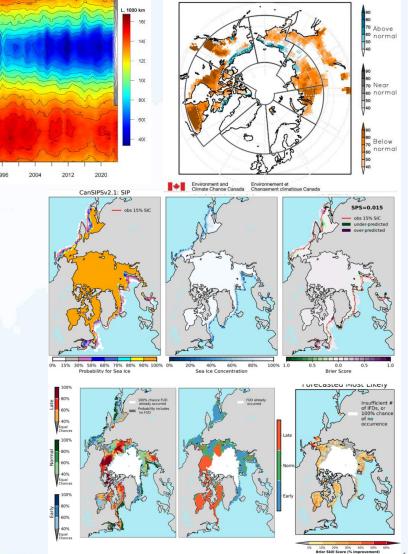
service domain of Arctic RCC

中心 National Climate Center

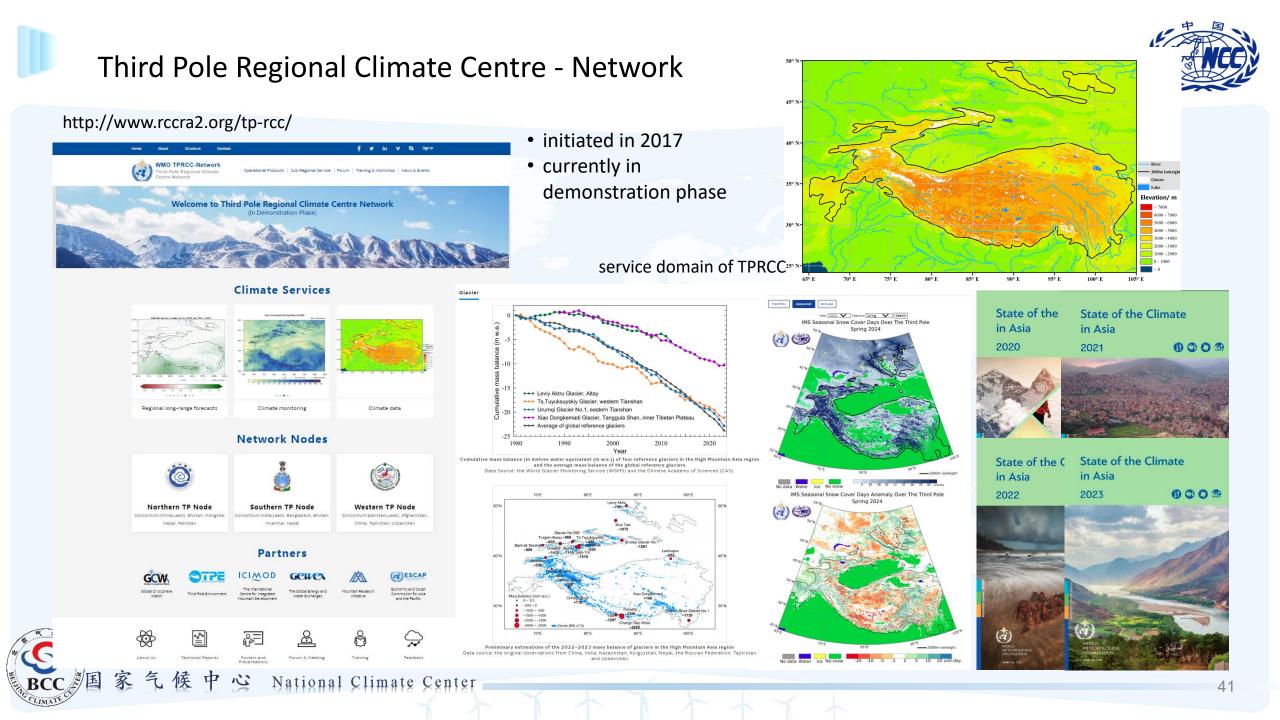

家

Arctic Climate Forum (since 2018, twice a year)

40


Consensus Statement

monitoring and prediction of sea ice and SWE


Mar

截图(Alt + A)

22 - 23 May 2024

Inaugural session of TPCF, Lijiang, China, 4-6 June 2024

1st Consensus Statement

1st Third Pole Climate Forum Consensus Statement

(TPCF-1)

Lijiang, China, 4-6 June, 2024

Summary of the Climate for December 2023 to April 2024 and the Climate Outlook for June to September 2024

Background and Contributing Institutions

The WMO Third Pole Regional Climate Center-Network (TPRCC-Network), focusing on the Third Pole (TP) region, was established to meet the region-specific climate and cryosphere service requirements. It is comprised of three Nodes based on the geographical and functional distribution of responsibilities: Northern Node (led by China), Southern Node (led by India), and Western Node (led by Pakistan), with China as an overall coordinator of the Network. Broad partnerships have been developed with GCW, GEWEX, ICIMOD, MRI, TPE, and UNESCAP. The TPRCC-Network will play a pivotal role in fostering collaborative regional climate services within its domain, effectively addressing the needs of stakeholders on adaptation to climate change, and decision-making across the region. These tasks will be accomplished to develop products and services and disseminate through the TPRCC-Network we bportal (http://www.rccra2.org/tp-rcc/). The regular update and online publication of seasonal climate bulletins and consensus statements during the biannual climate forums, will ensure a continuous flow of information and engagement.

The consensus statements are the primary outcomes of the TPCF. Incorporating regional expertise, the statements integrate observational data, historical trends, state of current climate and seasonal forecasts. The statements provide an overview of surface air temperature (SAT), precipitation, snow cover, and the extreme events and hazards observed during the preceding season and offer an outlook for SAT and precipitation for the upcoming season. The procedure adopted to develop a Consensus Statement (CS) is given as Annex-I.

This consensus statement was produced and mutually agreed at the inaugural session of the TPCF held in Lijiang, China, 4-6 June, 2024, co-hosted by the Beijing Climate Centre (BCC) of the China Meteorological Administration (CMA) and the World Meteorological Organization (WMO). The

-1-

Users' Needs on Long-Range Forecast

HEIJIE

CLIMATE

Outcomes of TPCF and scoping meetings

Recommendation	No.	Action
	1	Follow the production of the first regional monitoring / outlook
Improve the production of regional outlooks	2	Explore customized products from the leading centres (e.g. cryosphere-related products) and provide feedback
	3	Diagnostic (satellite) and prediction on snow cover extent; water availability for the predicted season
Seasonal T&P, maximize using of GPC products	4	Use more than one reanalysis (Jonathon Wright) - led by TPRCC; Suggest member and approach to use
	5	Include geographical TPRCC covering domain in LC-LRFMME graphical domain
	6	Climate Watch products related to hazards covered by mandatory function
Consider Impact-Based Forecast	7	Provide the customized products (digital products behind the graphics) and elaborated types of variables to support EW4ALL
Understanding research needs to improve monitoring and prediction	8	Engage WCRP (coordinate Climate Research Forum, there's one for South Asia – Mandira link science to society), e.g. CliC fellowships - Kazakhstan (Maria provided information)
Development of climate prediction verification products and related technological documents for multi-users	9	TT-LRF to lead

Most Critical Hazards Identified

- 1. Floods including GLOF, flash flood
- 2. Drought including ZUD (long dry spell)
- 3. Land slide and debris flow
- 4. Avalanches, land/mountain slides
- 5. Large scale forest fires (long dry spell)
- 6. Frost, lightning
- 7. Increasing temperature, extreme temperature
- 8. Extreme rainfall in sub-seasonal scale

Outcome of TPCF scoping meeting in Bangkok, Nov. 2023

JDP-TPRCC in WMO RAII Operational Plan 2021-2024

No.	WMO LTG	Cg/EC Resolution/ Decision	RA II Priorities	Key Result Areas or PROJECTS (terminolo gy to be discussed)	Deliverables	KPIs	Related Activities and Timeline		
RA II- 17-J- DP-1	LTG-2/ Objective -2.2	R48, R50/ Cg-18, R16, R46, R48/ EC-69, D47/ EC-70, R6/ EC-71, 4.2(12)/ EC-73	2	Promote polar and high-mount ain activities	 Assessments of regional coverage of the GCW Surface Observing Network Results on the evaluation of Members' requirements and potential sharing of cryospheric observations and their support to regional cooperation and sharing, including through GCW and TPRCC- Network Homogeneity of cryosphere observations in line with relevant best practices published by GCW Operational data sets and fit-for-purpose Climate Monitoring and Long-Range Forecast products available for users of TPRCC-Network through its Node's web portal and/or the web portal of TPRCC-Network Plan for GDPFS pilot project, with a focus on the cryosphere, to enable the TPRCC-Network to deliver on one of the goals pursued by the S/GDPFS: geographical application 	1. Number of stations in Asia's High Mountain region affiliated/registered to the GCW surface observing network in OSCAR/Surface 2. Number of Members supplying cryospheric observations, through GCW 3. Number of Members trained on WMO-recommended best practices of cryosphere observations, and their use 4. Number of Members verifying remote sensing or reanalysis data for supporting the development and operation of the TPRCC-Network, including during its demonstration phase 5. Number of reasons and reasons and reasons and reasons and the reasons and the reasons and the reasons and reasons are reasons and reasons and reasons are reasons and reasons and reasons are reasons and reasons are reasons and reasons are reasons areasons are reasons are reasons are reasons are reasons are	 Review and update metadata for stations registered cryosphere observations (2022) Questionnaire on Members' willingness, requirements, plan of cryospheric observations (in-situ and remote sensing) (2023) Iraining at regional level for WMO-recommended best practices of measurement of cryospheric observations and their use, with experts invited (2023-2024) Workshop on addressing gaps on technical issues, e.g. verification remote sensing or reanalysis data relevant to High Mountain regions (2022-7) Workshop on addressing the TPRCC-Network's specific serencing the framework of GDP Jook Forum (TPCOF) (2022- per year) Jn observation and forecasts of weather and climate (TBD) 		
				WN	MO-recommended best practices of				
				measurement of cryospheric observations and their use, with experts invited (2023-2024)					
						from TPCOF, regularly convened under coordination and guidance of TPRCC-Network as its flagship activity			

JDP-TPRCC in WMO RAII Operational Plan 2024-2027

No.	Deliverables	KPIs	Related Activities and Timeline
J-DP-TPRCC	1. Consensus Statements for the Third Pole region;	1. Number of participants attending TPCF;	1. Convene Third Pole Climate Forum, twice a year (2024-2027)
	2. Procedure of producing consensus seasonal outlook;	2. Models recommended for ensemble mean and data set for verification;	2. Technical meetings on Long-Range Forecast (mostly virtual by TT-LRF), under the guidance of JET-TPRCC (2024-2027)
	3. Operational data sets and fit-for- purpose Climate Monitoring and Long- Range Forecast products available for users of TPRCC-Network;	3. Number of products available on web portal and nodes' websites;	3. JET-TPRCC meetings (mostly virtual) to address gaps identified between users' demands and service provisions (2024-2027)
	4. Recommendations on cryosphere observations and data sharing to relevant constituent bodies;	4. Number of recommendations;	4. Analyze Members' feedbacks to questionnaire on terrestrial cryosphere observations and data (2024-2025)
	5. Approach of accessing in-situ and remote sensing data for producing thematic datasets for the third pole region	5. Number of data available for operational use;	5. Data focused workshop with capacity building activities, e.g. observing techniques, data access, etc. (2024)
	6. Training program	6. Number of participants;	6. Combined training on method and instruments of cryosphere observations and state-of-art research, etc. (2024-2025)

Cryosphere ambitions endorsed by WMO EC-78:

- Everyone on the planet is prepared for and resilient to the impacts from changes in the cryosphere.
- The global community works collaboratively to limit and reduce cryosphere loss and its impacts.
- Data, science, and indigenous knowledge are accessible and provide a sound basis for policies and decisions on response, mitigation, and adaptation in the face of future changes.
- The importance of the cryosphere and the consequences of its changes are known, universally understood and inspire actions.

Thanks

